Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Acta Trop ; 248: 107032, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838024

RESUMO

During its life cycle, Trypanosoma rangeli invades the hemolymph of its invertebrate host and colonizes hemocytes and salivary glands. The parasite cannot synthesize some lipid classes, and during its cycle, it depends on the uptake of these molecules from its vertebrate and invertebrate hosts to meet growth and differentiation requirements. However, until now, knowledge on how the parasite affects the lipid physiology of individual insect organs has been largely unknown. Herein, the biochemical and molecular dynamics of triatomine R. prolixus lipid metabolism in response to acute T. rangeli infection were investigated. Biochemical and microscopic assays revealed the lipid droplet profile and the levels of the different identified lipid classes. In addition, a qRT‒PCR approach was used to determine the expression profile of 6 protein-coding genes involved in the R. prolixus lipid physiology. We observed that triacylglycerol (TAG), monoacylglycerol (MAG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC) levels in the fat body decreased in infected insects. On the other hand, high levels of free fatty acids were observed in the hemolymph during infection. Analysis by confocal microscopy revealed a decrease in lipid droplets size from infected fat bodies, and investigations by scanning electron microscopy revealed a significant number of parasites adhered to the surface of the organ. T. rangeli infection upregulated the transcript levels of the protein-coding gene for the acetyl-CoA carboxylase, the first enzyme in the de novo fatty acid synthesis pathway, responsible for the production of malonyl-CoA. On the other hand, downregulation of lipophorin receptor was observed. In conclusion, this study reveals a new set of molecular events that occur within the vector in response to the challenge imposed by the parasite.


Assuntos
Rhodnius , Trypanosoma rangeli , Trypanosoma , Animais , Trypanosoma rangeli/genética , Rhodnius/parasitologia , Metabolismo dos Lipídeos , Glândulas Salivares/metabolismo , Lipídeos , Trypanosoma/genética
2.
Insect Biochem Mol Biol ; 159: 103987, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429385

RESUMO

Trypanosoma rangeli is a protozoan parasite that infects triatomines and mammals in the Americas, producing mixed infections with Trypanosoma cruzi, the etiological agent of Chagas disease. The former parasite is not pathogenic to humans, but has different levels of pathogenicity, as well as causing physiological and behavioral alterations, to its invertebrate hosts. In this study, we measured locomotory activity, and the glyceride accumulation profile in the hemolymph and fat body, as well as the expression of key genes related to triglyceride metabolism, of Rhodnius prolixus nymphs infected with T. rangeli. We found that the locomotory activity of the insects was correlated with the amount of triglycerides in the fat body. Infected nymphs had increased activity when starved, and also had an accumulation of glycerides in the fat body and hemolymph. These alterations were also associated with a higher expression of the diacylglycerol acyltransferase, lipophorin and lipophorin receptor genes in the fat body. We infer that T. rangeli is able to alter the energetic processes of its invertebrate host, in order to increase the availability of lipids to the parasite, which, in turn modifies the activity levels of the insect. These alterations are discussed with regard to their potential to increase the transmission rate of the parasite.


Assuntos
Rhodnius , Trypanosoma rangeli , Humanos , Animais , Trypanosoma rangeli/fisiologia , Rhodnius/genética , Interações Hospedeiro-Parasita , Insetos Vetores/fisiologia , Ninfa , Metabolismo Energético , Mamíferos
3.
Enzyme Microb Technol ; 165: 110196, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36657310

RESUMO

Human milk oligosaccharides (HMOs) denote specific glycans in human breast milk. They function as prebiotics, immune modulating, and antimicrobial agents in the gut of breastfed infants, and certain HMOs even promote the cognitive development of the baby. HMOs are virtually absent in cow's milk and hence in infant formula, which provides a huge incentive for identifying ways in which HMOs can be produced to improve infant formulas. Here, we show that different sialylated and fucosylated HMOs can be generated in cow's milk via different simultaneous enzymatic transglycosylation reactions catalyzed by an engineered sialidase (EC 3.2.1.18, from Trypanosoma rangeli) and an 1,2-α-L-fucosidase (EC 3.2.1.63, from Tannerella forsinthia) acting on the lactose in the milk and on casein glycomacropeptide, two types of commercially available HMOs, i.e. 2'-fucosyllactose and lacto-N-neotetraose, added to the milk. We also outline the details of the individual reactions in aqueous systems, demonstrate that the enzymatic reactions can be accomplished at 5 °C, and validate the products formed by LC-MS and NMR analysis. Enzymatic production of HMOs directly in milk provides opportunities for enriching milk and infant formulas and extends the use of enzymatic transglycosylation reactions to synthesis of HMOs in milk and eventually in other beverages.


Assuntos
Leite Humano , Oligossacarídeos , Feminino , Animais , Bovinos , Humanos , Leite Humano/química , Oligossacarídeos/química , Polissacarídeos/análise , Glicosilação , alfa-L-Fucosidase/metabolismo
4.
Parasitology ; : 1-7, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36259320

RESUMO

Trypanosoma rangeli is a protozoan that infects triatomines and mammals in Central and South America. Although it does not cause disease to humans, this parasite produces different levels of pathogenicity to its invertebrate host, mainly in species of the genus Rhodnius. In this study, we followed T. rangeli-infected and uninfected pairs throughout their adult lives and measured the amount of blood ingested, number of eggs laid, number of eggs hatched and proportion of infertile eggs, as well as female life expectancy. We found that all reproductive parameters were drastically decreased during infection, mainly due to the reduced amount of blood the infected insects ingested throughout their lives. Reproductive parameters were also affected by the reduction of the life expectancy of infected females, as survival was positively correlated with the number of eggs laid. The strategies used by the parasite to be transmitted are discussed in view of the pathological effects it causes in the insect.

5.
Math Biosci Eng ; 19(8): 8452-8478, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35801473

RESUMO

In this paper, an insect-parasite-host model with logistic growth of triatomine bugs is formulated to study the transmission between hosts and vectors of the Chagas disease by using dynamical system approach. We derive the basic reproduction numbers for triatomine bugs and Trypanosoma rangeli as two thresholds. The local and global stability of the vector-free equilibrium, parasite-free equilibrium and parasite-positive equilibrium is investigated through the derived two thresholds. Forward bifurcation, saddle-node bifurcation and Hopf bifurcation are proved analytically and illustrated numerically. We show that the model can lose the stability of the vector-free equilibrium and exhibit a supercritical Hopf bifurcation, indicating the occurrence of a stable limit cycle. We also find it unlikely to have backward bifurcation and Bogdanov-Takens bifurcation of the parasite-positive equilibrium. However, the sustained oscillations of infected vector population suggest that Trypanosoma rangeli will persist in all the populations, posing a significant challenge for the prevention and control of Chagas disease.


Assuntos
Doença de Chagas , Rhodnius , Trypanosoma cruzi , Trypanosoma rangeli , Animais , Doença de Chagas/epidemiologia , Vetores de Doenças
6.
J Parasit Dis ; 46(2): 323-327, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35692475

RESUMO

Didelphis marsupialis is a primary reservoir of Trypanosoma cruzi, etiologic agent of American Trypanosomiasis-AT or Chagas Disease-CD, in America. Some findings of Trypanosoma rangeli have been recorded in this mammal, in sympatry with T. cruzi. In Los Montes de María, Bolívar, Colombian Caribbean, triatomine insects and potential parasite host has been registered, but little is known about the relationship between these parasites and D. marsupialis. We investigated the natural trypanosomatids infection rate in D. marsupialis, applying a parasitological and molecular diagnosis. Twenty D. marsupialis was investigated between 2018 and 2019 using 21 Tomahawk® traps placed on the sylvatic/domestic corridors. Blood was drawn by cardiopuncture after sedation. An aliquot of blood samples was cultured in Novy, Nicolle, McNeal/Roswell Park Memorial Institute medium at 24 °C/60 days for the detection of motile trypomastigotes. Parasite DNA was obtained by salting out methods from positive blood cultures. Trypanosomatids diagnosis was done by Polymerase Chain Reaction-sequencing of V7V8 region of 18S ribosomal RNA (18S-rRNA) gene. Amplicons were sequenced, and consensus sequences were aligned with reference sequences from GenBank. Four isolates corresponded to T. rangeli (20%) and one to T. cruzi (5%). The natural infection of D. marsupialis by T. rangeli and T. cruzi constitutes the first record of these parasites in didelphids in Los Montes de María and the first record of T. rangeli in this marsupial, in the Colombian Caribbean.

7.
Microbiome ; 10(1): 45, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272716

RESUMO

BACKGROUND: The causative agent of Chagas disease, Trypanosoma cruzi, and its nonpathogenic relative, Trypanosoma rangeli, are transmitted by haematophagous triatomines and undergo a crucial ontogenetic phase in the insect's intestine. In the process, the parasites interfere with the host immune system as well as the microbiome present in the digestive tract potentially establishing an environment advantageous for development. However, the coherent interactions between host, pathogen and microbiota have not yet been elucidated in detail. We applied a metagenome shotgun sequencing approach to study the alterations in the microbiota of Rhodnius prolixus, a major vector of Chagas disease, after exposure to T. cruzi and T. rangeli focusing also on the functional capacities present in the intestinal microbiome of the insect. RESULTS: The intestinal microbiota of R. prolixus was dominated by the bacterial orders Enterobacterales, Corynebacteriales, Lactobacillales, Clostridiales and Chlamydiales, whereas the latter conceivably originated from the blood used for pathogen exposure. The anterior and posterior midgut samples of the exposed insects showed a reduced overall number of organisms compared to the control group. However, we also found enriched bacterial groups after exposure to T. cruzi as well as T rangeli. While the relative abundance of Enterobacterales and Corynebacteriales decreased considerably, the Lactobacillales, mainly composed of the genus Enterococcus, developed as the most abundant taxonomic group. This applies in particular to vectors challenged with T. rangeli and at early timepoints after exposure to vectors challenged with T. cruzi. Furthermore, we were able to reconstruct four metagenome-assembled genomes from the intestinal samples and elucidate their unique metabolic functionalities within the triatomine microbiome, including the genome of a recently described insect symbiont, Candidatus Symbiopectobacterium, and the secondary metabolites producing bacteria Kocuria spp. CONCLUSIONS: Our results facilitate a deeper understanding of the processes that take place in the intestinal tract of triatomine vectors during colonisation by trypanosomal parasites and highlight the influential aspects of pathogen-microbiota interactions. In particular, the mostly unexplored metabolic capacities of the insect vector's microbiome are clearer, underlining its role in the transmission of Chagas disease. Video Abstract.


Assuntos
Doença de Chagas , Microbiota , Parasitos , Rhodnius , Trypanosoma cruzi , Animais , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Microbiota/genética , Rhodnius/parasitologia , Trypanosoma cruzi/genética
8.
Parasitology ; 149(2): 155-160, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234603

RESUMO

Trypanosoma rangeli is a protozoan that infects triatomines and mammals in Latin America, sharing hosts with Trypanosoma cruzi, the etiological agent of Chagas disease. Trypanosoma rangeli does not cause disease to humans but is strongly pathogenic to its invertebrate hosts, increasing mortality rates and affecting bug development and reproductive success. We have previously shown that this parasite is also capable of inducing a general increase in the locomotory activity of its vector Rhodnius prolixus in the absence of host cues. In this work, we have evaluated whether infection impacts the insect­vertebrate host interaction. For this, T. rangeli-infected and uninfected R. prolixus nymphs were released in glass arenas offering single shelters. After a 3-day acclimatization, a caged mouse was introduced in each arena and shelter use and predation rates were evaluated. Trypanosoma rangeli infection affected all parameters analysed. A larger number of infected bugs was found outside shelters, both in the absence and presence of a host. Infected bugs also endured greater predation rates, probably because of an increased number of individuals that attempted to feed. Interestingly, mice that predated on infected bugs did not develop T. rangeli infection, suggesting that the oral route is not effective for these parasites, at least in our system. Finally, a smaller number of infected bugs succeeded in feeding in this context. We suggest that, although T. rangeli is not transmitted orally, an increase in the proportion of foraging individuals would promote greater parasite transmission rates through an increased frequency of very effective infected-bug bites.


Assuntos
Rhodnius , Trypanosoma cruzi , Trypanosoma rangeli , Trypanosoma , Animais , Insetos Vetores/parasitologia , Mamíferos , Camundongos , Comportamento Predatório , Rhodnius/parasitologia
9.
Int J Parasitol Parasites Wildl ; 17: 20-25, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34917470

RESUMO

Didelphis marsupialis has been reported as a competent reservoir for trypanosomatid parasites infections. The aim of this study was to measure Trypanosoma cruzi, T. rangeli, and Leishmania spp. infection rates and to characterize discrete typing units (DTUs) of T. cruzi in D. marsupialis from two Chagas disease endemic sites in Panama. Blood from 57 wild-caught D. marsupialis were examined from two rural communities, Las Pavas (N = 18) and Trinidad de las Minas (N = 39). Twenty-two (38.60%) opossums were positive for flagellates by general hemoculture. T. cruzi infection was confirmed by positive hemoculture and/or kDNA based PCR performed in 31/57 (54.39%) blood samples from opossums. T. rangeli infection was confirmed by hemoculture and/or TrF/R2-Primer PCR assay applied on 12/57 (21.05%) blood samples. Nine (15.79%) D. marsupialis harbored T. cruzi/T. rangeli coinfections. All opossums tested negative for Leishmania spp. by PCR assays based on kDNA and HSP70 gene amplification. There was a significant association between T. cruzi infection and site (Fisher exact test, p = 0.02), with a higher proportion of T. cruzi infected opossums in Las Pavas (77.78%, n = 14/18) compared to Trinidad de las Minas (43.59%, n = 17/39). A significant association was found between habitat type and T. cruzi infection in opossums across both communities, (X2 = 6.91, p = 0.01, df = 1), with a higher proportion of T. cruzi infection in opossums captured in forest remnants (76%, 19/25) compared to peridomestic areas (37.5%, 12/32). T. rangeli detection, but not T. cruzi detection, may be improved by culture followed by PCR. TcI was the only DTU detected in 22 T. cruzi samples using conventional and real-time PCR. Eight T. rangeli positive samples were characterized as KP1(-)/lineage C. Trypanosome infection data from this common synanthropic mammal provides important information for improved surveillance and management of Chagas disease in endemic regions of Panama.

10.
J Biomol Struct Dyn ; 40(23): 13154-13160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34583627

RESUMO

Trypanosoma rangeli is the most similar organism to Trypanosoma cruzi. They share distribution areas, hosts, and some vectors. However, there are key differences between them; the first lacks a multiplicative form in the host and does not cause disease, while the second is the etiological agent of the American tripanosomiasis, a tropical disease that still does not have an effective vaccine nor treatment. Aiming to reveal the differences in their gene expression patterns in each life cycle form, the comparison of expression profiles was made parting from the ESTs available in TriTrypDB. We verified that there are no genes unique to T. rangeli in the ESTs. Astonishingly, we determined that T. cruzi has a single copy gene called LYT1, which has no similarity to any other protein of any organism on Earth. LYT1 is involved in invasion, motility, and cell cycle, making it an attractive vaccine target. After its identification, using immunoinformatics programs, we found multiple potential B- and T-cell epitopes in this protein, which is also rich in intrinsically disordered regions. Additionally, an approximation of the 3 D structure was predicted where the B-cell epitopes were located to assess their solvent access. We propose that its particular structural conformation confers the flexibility required for the interactions with multiple proteins, which in part may be performed through N-myristoylation sites. Given its important role in the infectiveness of T. cruzi and its antigenic potential, we highlight the need for future studies focused on its molecular and immunological in vivo characterization.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Proteínas de Protozoários/química
11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-951059

RESUMO

Objective: To investigate the morphological structure of ovarian follicular cells and biochemical parameters of both ovaries and fat bodies (sites of vitellogenesis) from Rhodnius (R.) prolixus infected with Trypanosoma (T.) rangeli. Methods: Adult virgin females of R. prolixus were fed upon a membrane apparatus containing heat-inactivated citrated rabbit blood and a suspension of T. rangeli epimastigotes (Macias strain). Females from the control group and all the males received parasitefree blood. Transmission electron microscopy was used to reveal the morphological aspects of ovarian follicle cells in both control and parasite-infected groups. Protein profile, proteolytic activities and Western blotting analyses were performed in either ovary or fat body samples of control and parasite-infected groups. Results: According to the ultrastructural data, T. rangeli infection elicited a degeneration process in the ovarian follicular cells of R. prolixus. Proteolytic assays indicated a reduction in the activity of aspartic peptidases in the ovary and fat body from parasite-infected group, while a significant increase in the cysteine peptidase activity was measured in both insect organs. Additionally, immunoblotting revealed that vitellogenin was overexpressed in the ovary of parasite-infected insects. Conclusions: T. rangeli infection seems to elicit an early programmed cell death in the ovarian follicle cells as well as induces the modulation on the activities of different peptidase classes in either ovaries or fat bodies and the overexpression of the vitellogenin in the ovary of R. prolixus.

12.
Exp Parasitol ; 230: 108159, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563508

RESUMO

Trypanosoma rangeli is a non-virulent hemoflagellate parasite infecting humans, wild and domestic mammals in Central and Latin America. The share of genotypic, phenotypic, and biological similarities with the virulent, human-infective T. cruzi and T. brucei, allows comparative studies on mechanisms of pathogenesis. In this study, investigation of the T. rangeli Arginine Kinase (TrAK) revealed two highly similar copies of the AK gene in this taxon, and a distinct expression profile and activity between replicative and infective forms. Although TrAK expression seems stable during epimastigotes growth, the enzymatic activity increases during the exponential growth phase and decreases from the stationary phase onwards. No differences were observed in activity or expression levels of TrAK during in vitro differentiation from epimastigotes to infective forms, and no detectable AK expression was observed for blood trypomastigotes. Overexpression of TrAK by T. rangeli showed no effects on the in vitro growth pattern, differentiation to infective forms, or infectivity to mice and triatomines. Although differences in TrAK expression and activity were observed among T. rangeli strains from distinct genetic lineages, our results indicate an up-regulation during parasite replication and putative post-translational myristoylation of this enzyme. We conclude that up-regulation of TrAK activity in epimastigotes appears to improve proliferation fitness, while reduced TrAK expression in blood trypomastigotes may be related to short-term and subpatent parasitemia in mammalian hosts.


Assuntos
Arginina Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Trypanosoma cruzi/enzimologia , Trypanosoma rangeli/enzimologia , Sequência de Aminoácidos , Animais , Arginina Quinase/biossíntese , Arginina Quinase/classificação , Arginina Quinase/genética , Western Blotting , DNA de Protozoário/isolamento & purificação , Eletroforese em Gel Bidimensional , Feminino , Flagelos/enzimologia , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Alinhamento de Sequência , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Trypanosoma rangeli/classificação , Trypanosoma rangeli/genética , Trypanosoma rangeli/patogenicidade , Regulação para Cima , Virulência
13.
Pathogens ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207936

RESUMO

Trypanosoma rangeli is a generalist hemoflagellate that infects mammals and is transmitted by triatomines around Latin America. Due to its high genetic diversity, it can be classified into two to five lineages. In Brazil, its distribution outside the Amazon region is virtually unknown, and knowledge on the ecology of its lineages and on host species diversity requires further investigation. Here, we analyzed 57 T. rangeli samples obtained from hemocultures and blood clots of 1392 mammals captured in different Brazilian biomes. The samples were subjected to small subunit (SSU) rDNA amplification and sequencing to confirm T. rangeli infection. Phylogenetic inferences and haplotype networks were reconstructed to classify T. rangeli lineages and to infer the genetic diversity of the samples. The results obtained in our study highlighted both the mammalian host range and distribution of T. rangeli in Brazil: infection was observed in five new species (Procyon cancrivorous, Priodontes maximum, Alouatta belzebul, Sapajus libidinosus, and Trinomys dimidiatus), and transmission was observed in the Caatinga biome. The coati (Nasua nasua) and capuchin monkey (S. libidinosus) are the key hosts of T. rangeli. We identified all four T. rangeli lineages previously reported in Brazil (A, B, D, and E) and possibly two new genotypes.

14.
Enzyme Microb Technol ; 148: 109829, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116750

RESUMO

Human milk oligosaccharides (HMOs) are lactose-based glycan molecules present in human breast milk. HMOs are essentially not present in cow's milk and hence not naturally available in infant formulas. HMOs possess several health and developmentally beneficial properties, and the sialylated HMOs are thought to play a particularly important role for infant brain development. Enzymatic transsialylation directly in cow's milk, involving enzyme catalyzed transfer of sialic acid from a sialic acid donor to an acceptor, is a novel route for producing sialylated HMOs for e.g. infant formulas. The transsialidase (EC 2.4.1.-) of Trypanosoma cruzi is linked to trypanosomatid pathogenicity, but certain hydrolytic sialidases (neuraminidases), EC 3.2.1.18, from non-pathogenic organisms, can actually catalyze transsialylation. Here, we report enzymatic production of the HMO compound 3'-sialyllactose directly in cow's milk using engineeredsialidases, Tr15 and Tr16, originating from the nonpathogenic Trypanosoma rangeli. Both Tr15 and Tr16 readily catalyzed transsialylation in milk at 5 °C-40 °C using κ(kappa)-casein glycomacropeptide (cGMP) as sialyl donor substrate. Tr15 was the most efficient as this enzyme produced 1160 mg/L (1.8 mM) 3'-sialyllactose in whole milk during 10 min of reaction at 5 °C. The activation energy values, Ea, of the enzymatic transsialylation reactions were similar in milk and in buffer solutions containing cGMP and lactose. The Ea of the Tr15 catalyzed transialylation reaction in milk was 16.5 kJ/mol, which was three times lower than the Ea of Tr16 (66 kJ/mol) and of T. cruzi transsialidase (50 kJ/mol), corroborating that Tr15 was the fastest of the three enzymes and a promising candidate for potential industrial production of 3'-sialyllactose in milk. 3'sialyllactose was stable during pasteurization (30 min. at 62.5 °C) and freeze-drying.


Assuntos
Oligossacarídeos , Trypanosoma rangeli , Animais , Bovinos , Feminino , Humanos , Leite Humano , Ácido N-Acetilneuramínico
15.
Front Immunol ; 11: 1774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973747

RESUMO

Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5-7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.


Assuntos
Doença de Chagas/parasitologia , Proteoma , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Biologia Computacional , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Mapas de Interação de Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Via Secretória , Transdução de Sinais , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Trypanosoma rangeli/genética , Trypanosoma rangeli/imunologia
16.
Parasit Vectors ; 13(1): 252, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410645

RESUMO

BACKGROUND: Trypanosoma cruzi, the causative agent of Chagas disease, and T. rangeli are kinetoplastid parasites endemic to Latin America. Although closely related to T. cruzi and capable of infecting humans, T. rangeli is non-pathogenic. Both parasite species are transmitted by triatomine bugs, and the presence of T. rangeli constitutes a confounding factor in the study of Chagas disease prevalence and transmission dynamics. Trypanosoma cruzi possesses high molecular heterogeneity: seven discrete typing units (DTUs) are currently recognized. In Ecuador, T. cruzi TcI and T. rangeli KP1(-) predominate, while other genetic lineages are seldom reported. METHODS: Infection by T. cruzi and/or T. rangeli in different developmental stages of triatomine bugs from two communities of southern Ecuador was evaluated via polymerase chain reaction product size polymorphism of kinetoplast minicircle sequences and the non-transcribed spacer region of the mini-exon gene (n = 48). Forty-three mini-exon amplicons were also deep sequenced to analyze single-nucleotide polymorphisms within single and mixed infections. Mini-exon products from ten monoclonal reference strains were included as controls. RESULTS: Trypanosoma cruzi genetic richness and diversity was not significantly greater in adult vectors than in nymphal stages III and V. In contrast, instar V individuals showed significantly higher T. rangeli richness when compared with other developmental stages. Among infected triatomines, deep sequencing revealed one T. rangeli infection (3%), 8 T. cruzi infections (23.5%) and 25 T. cruzi + T. rangeli co-infections (73.5%), suggesting that T. rangeli prevalence has been largely underestimated in the region. Furthermore, deep sequencing detected TcIV sequences in nine samples; this DTU had not previously been reported in Loja Province. CONCLUSIONS: Our data indicate that deep sequencing allows for better parasite identification/typing than amplicon size analysis alone for mixed infections containing both T. cruzi and T. rangeli, or when multiple T. cruzi DTUs are present. Additionally, our analysis showed extensive overlap among the parasite populations present in the two studied localities (c.28 km apart), suggesting active parasite dispersal over the study area. Our results highlight the value of amplicon sequencing methodologies to clarify the population dynamics of kinetoplastid parasites in endemic regions and inform control campaigns in southern Ecuador.


Assuntos
DNA de Protozoário/genética , Éxons/genética , Variação Genética , Trypanosoma cruzi/genética , Trypanosoma rangeli/genética , Animais , Equador/epidemiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Insetos Vetores/parasitologia , Masculino , Filogenia , Triatominae/parasitologia
17.
Methods Mol Biol ; 2116: 69-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221914

RESUMO

The infection of triatomines with trypanosomes can be performed with different forms of the parasite, and the procedure is important not only for vector-parasite interaction studies but also for maintaining the infectivity of parasite strains, which guarantees more realistic biological and molecular investigations. Here, I describe how to infect the vector Rhodnius prolixus, a model species, with two different species of Trypanosoma.


Assuntos
Parasitologia/métodos , Rhodnius/parasitologia , Trypanosoma cruzi/patogenicidade , Trypanosoma rangeli/patogenicidade , Tripanossomíase/transmissão , Ração Animal , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Parasita , Humanos , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida , Camundongos , Modelos Animais , Trypanosoma cruzi/isolamento & purificação , Trypanosoma cruzi/fisiologia , Trypanosoma rangeli/isolamento & purificação , Trypanosoma rangeli/fisiologia , Tripanossomíase/parasitologia
18.
Math Biosci ; 324: 108326, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092467

RESUMO

Trypanosoma rangeli (T. rangeli), a parasite, is not pathogenic to human but pathogenic to some vector species to induce the behavior changes of infected vectors and subsequently impact the transmission dynamics of other diseases such as Chagas disease which shares the same vector species. Here we develop a mathematical model and conduct qualitative analysis for the transmission dynamics of T. rangeli. We incorporate both systemic and co-feeding transmission routes, and account for the pathogenic effect using infection-induced fecundity and fertility change of the triatomine bugs. We derive two thresholds Rv (the triatomine bug basic reproduction number) and R0 (the T. rangeli basic reproduction number) to delineate the dynamical behaviors of the ecological and epidemiological systems. We show that when Rv>1 and R0>1, a unique parasite positive equilibrium E* appears. We find that E* can be unstable and periodic oscillations can be observed where the pathogenic effect plays a significant role. Implications of the qualitative analysis and numerical simulations suggest the need of an integrative vector-borne disease prevention and control strategy when multiple vector-borne diseases are transmitted by the same set of vector species.


Assuntos
Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Triatominae/parasitologia , Trypanosoma rangeli , Tripanossomíase/transmissão , Animais , Número Básico de Reprodução/estatística & dados numéricos , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Simulação por Computador , Interações Hospedeiro-Parasita , Humanos , Conceitos Matemáticos , Modelos Biológicos , Especificidade da Espécie , Trypanosoma cruzi/patogenicidade , Trypanosoma rangeli/patogenicidade , Tripanossomíase/epidemiologia , Tripanossomíase/parasitologia
19.
Vector Borne Zoonotic Dis ; 20(2): 117-124, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31638479

RESUMO

Trypanosoma rangeli is an avirulent flagellate protozoan that could mislead correct diagnosis of Trypanosoma cruzi infection, the causative agent of Chagas' disease, given their high similarity. Besides, T. rangeli presents two genetic groups, whose differentiation is achieved mainly by molecular approaches. In this context, ribosomal DNA (rDNA) is a useful target for intra and interspecific molecular differentiation. Analyzing the rDNA of T. rangeli and comparison with other trypanosomatid species, two highly divergent regions (Trß1 and Trß2) within the 28Sß gene were found. Those regions were amplified and sequenced in KP1(+) and KP1(-) strains of T. rangeli, revealing group-specific polymorphisms useful for intraspecific distinction through restriction fragment length polymorphism technique. Also, amplification of Trß1 allowed differentiation between T. rangeli and T. cruzi. Trß2 predicted restriction length profile, allowed differentiation between T. rangeli, T. cruzi, Trypanosoma brucei, and Leishmania braziliensis, increasing the use of Trß1 and Trß2 beyond a molecular approach for T. rangeli genotyping, but also as a useful target for trypanosomatid classification.


Assuntos
DNA Ribossômico , Trypanosoma rangeli/classificação , Trypanosoma rangeli/genética , DNA de Protozoário/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Especificidade da Espécie , Trypanosoma/classificação , Trypanosoma/genética , Trypanosoma cruzi/genética
20.
Rev. Soc. Bras. Med. Trop ; 53: e20190608, 2020. tab, graf
Artigo em Inglês | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1136828

RESUMO

Abstract INTRODUCTION: Trypanosoma rangeli is a protozoan that infects several domestic and wild mammals and shows significant distribution in Latin American countries. T. rangeli infection is similar to Chagas disease, both in diagnostic and prophylactic terms. Thus, the objective of this work was to review the diagnostic aspects and use of T. rangeli as an immunogen for Trypanosoma cruzi infection. METHODS: For this elaboration, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were adopted with descriptors derived from the Medical Subject Headings (MeSH) platform in the PubMed/MEDLINE and SciELO databases. The inclusion criteria were defined as original articles on "Trypanosoma rangeli" and diagnostic aspects of T. rangeli infection in humans and/or research on the possible vaccines developed using T. rangeli strains for T. cruzi infection. RESULTS: After applying the inclusion and exclusion criteria, 18 articles were procured, of which 4 addressed research on the possible vaccines developed using T. rangeli for T. cruzi infection in vertebrates and the remaining 14 predominantly dealt with the diagnostic aspects of T. rangeli infection in humans. CONCLUSIONS: In this study, we formulated a compilation of the essential literature on this subject, emphasizing the need for more accurate and accessible techniques for the differential diagnosis of infections caused by both protozoa, and underscored several prospects in the search for a vaccine for Chagas disease.


Assuntos
Humanos , Animais , Trypanosoma , Trypanosoma cruzi , Trypanosoma rangeli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...